$\begin{aligned} & \text { Half } \\ & \text { Term } \end{aligned}$	$\begin{aligned} & \hline \text { Unit } \\ & \text { Title } \end{aligned}$	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
AUT 1		F1.1 Calculations	Apply systematic listing strategies. Use priority of operations with positive and negative numbers. Simplifying calculations by cancelling. Use inverse operations.	Using Mathematics: Real Life Applications Everyone uses numbers on a daily basis often without really thinking about them. Shopping, cooking, working out bills applying for transport and measuring all rely on good understand of numbers	Writing $(6 \times 4) \div 2$ as $6 / 2$ $\times 4 / 2=3 \times 2=6$	This topic provides a good opportunity to revisit and practise arithmetic skills using both mental and written methods including formal algorithms. For Foundation students this may include reviewing the use of number lines and the extended number system beyond the natural numbers for working with directed numbers. For an additional game to practise basic use of 'BODMAS', try NRICH 'The 24 Game'. For students struggling with the concept of negative numbers, revisiting a couple of KS3 problems on the NRICH website could be useful: NRICH 'Strange Bank Account' and 'Strange Bank Account Part 2'. (nrich.maths.org)	This is a straightforward topic at GCSE but to move successfully to KS5 confidence with calculations involving integers, order of operations and inverse operations will be required for algebraic manipulation and equation solving. This will be developed further to include other types of number, such as complex numbers, and modular arithmetic, which in turn links to group theory and congruence classes	NRICH 'Largest Product'. This is a useful investigation that will ensure students become familiar with the terms 'sum' and 'product', which can be extended to non-integers; students could be encouraged to try to generalise their findings. NRICH 'Cinema Problem'. This is great for developing problem-solving skills and can be approached by exhaustive listings of calculations or introduction of algebra, so offers the possibility of extension for Higher tier students. NRICH 'Up, Down, Flying Around' balloon game. This is suitable for students who struggle with the concept of adding and subtracting negative integers. NRICH 'Consecutive Negative Numbers'. This investigation will ensure students have plenty of practice at adding and subtracting negative integers, while encouraging students to look for patterns and develop their investigation. Extend the 'Think of a number' by asking students to write their own problems and give to another student to work through. NRICH 'Twisting and Turning'. Although this is marked as a Key Stage 3 activity this is a useful way to help students think about 'undoing', thus developing concepts such as inverse operations, inverse functions and in particular reciprocals since the 'turn' operation is to use a reciprocal action. (nrich.maths.org) Twisting and Turning has two follow-on activities: NRICH 'More Twisting and Turning' and NRICH 'All Tangled Up', which further	Recommended Reading The Music of the Primes by Marcus Du Sautoy Age 14+ How can one predict when the next prime number will occur? Is there a formula which could generate primes? These apparently simple questions have confounded mathematicians ever since the Ancient Greeks. In 1859, the brilliant German mathematician Bernhard Riemann put forward a hypothesis which finally seemed to reveal a magical harmony at work in the numerical landscape. The promise that these eternal, unchanging numbers would finally reveal their secret thrilled mathematicians around the world. Yet Riemann never publicly provided a proof for his hypothesis and his housekeeper burned most of his personal papers on his death. Whoever cracks Riemann's hypothesis will go down in history, for it has implications far beyond mathematics. In business, it plays a central role in security and e-commerce. In science, it brings together vastly different areas, with critical ramifications in Quantum Mechanics, Chaos Theory and the future of computing. Pioneers in each of these fields are racing to crack the code and a prize of \$1 million	

$\begin{aligned} & \hline \text { Half } \\ & \text { Term } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Unit } \\ & \text { Title } \\ & \hline \end{aligned}$	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
								develop the use of reciprocals.	has been offered to the winner. As yet, it remains unsolved. THE PENGUIN DEGTIONARY OF Curious and Interesting NUMBERS The Penguin Dictionary of Curious and Interesting Numbers by David Wells Age 14+ Look up 1729 to see why it is 'among the most famous of all numbers'. Look up 0.7404 ($=\pi 18$) to discover that this is the density of closely packed identical spheres in what is believed by many mathematicians (though it was at that time an unproven hypothesis) and is known by all physicists and greengrocers to be the optimal packing. Look up Graham's number (the last one in the book), which is inconceivably big: even written as a tower of powers (999...) it would take up far more ink than could be made from all the atoms in the universe. It is an upper bound for a quantity in Ramsey theory whose actual value is believed to be about 6. A book to be dipped into at leisure. THINGS \qquad TOMAKE AND DO in the DIMENSION	
		F1.2 Decimal numbers	Round to a given number of decimal places. Multiply and divide decimal numbers. Use pictures to help you solve problems.	Using Mathematics: Real Life Applications Food technologists analyse the content of different raw and prepared foods to work out what they contain and how much there is of each ingredient. For example, how much water, protein, and fat there is in a cut of meat. They use decimal fractions to give the quantities correct tot tenths, hundredths, or even smaller parts of a gram.	Omitting zeros after the decimal point when asked to round numbers to a given number of decimal places.	This topic puts into practise the techniques developed using the four rules with integers. Ordering integers. Place value. Identifying that the position of a digit in a number determines its 'size' is as important for digits to the right of the decimal point as well as for digits to the left.	In integration, the techniques can sometimes reproduce the original function being integrated, as if it is recurring. There are methods for dealing with this type of function.	The Gelosia method of multiplying decimals can be used as a procedure or students can begin to explain why it works. Search the internet for 'Gelosia method'. NRICH ‘Does This Sound about Right?' introduces a series of statements for students to investigate by estimating the calculations.		Food technologists "The laws about labelling food are fairly strict. Manufacturers need to state exactly what is in their product and give exact amounts of different ingredients, so I have to measure things very accurately." Food scientists and food technologists develop food and drink products, making sure they are safe to consume. Salary: $£ \mathbf{2 0} \mathbf{0 0 0}$ to $\mathbf{£ 4 5 , 0 0 0}$ Sector: Hospitality and food Manufacturing Science and research
		F1.3 Place value H1.2 Place value and estimating	Convert metric measures. Write decimal numbers of millions. Round to a given number of significant figures. Estimate answers to calculations. Use one calculation to find the answer to another. Estimate an answer. Use place value to answer questions.	Using Mathematics: Real Life Applications When you read that 34000 people attended a festival, the actual number is likely to be slightly less or slightly more than that. When you roughly estimate what your spent over the weekend, look at an object and guess it is about 2.5 meters long or say things like, ‘l live about 15 kilometres from school' you are estimating and using approximate values.	Have a strong understanding of place value. Be confident with using decimals, particularly involving division. Be able to make estimates for calculations to decide if a solution is reasonable. To understand inequality notation (to help understanding of bounds). Students may struggle to recognise that it is more appropriate, for example, to round 62.1 to 64 than 60 , if they are subsequently required to take the square root.	Have a strong understanding of place value. Be confident with using decimals, particularly involving division. Be able to make estimates for calculations to decide if a solution is reasonable.	Estimations and approximation will continue to have general applications within a range of calculation types through A level, both in Mathematics and any subjects where calculations are required. There are many cross-curricular links where accuracy is important e.g. calculating concentrations in Chemistry, or use of formula within Business Studies or Economics. Within the Mathematics content, they have specific application in the Taylor and MacLaurin series and solutions by iteration.	How many potential examples of rounding can students find in today's news headlines? NRICH ‘Does This Sound about Right?'. A good activity to ensure students are able to identify realistic estimations in context.		
		F1.4 Factors and multiples	Recognise 2-digit prime numbers. Find factors and multiples of numbers. Find common factors and common multiples of two numbers. Find the HCF and LCM of two numbers by listing.	Using Mathematics: Real Life Applications People use numbers and basic calculations daily. A	Confusing HCF and LCM.	Students should be able to multiply and divide Integers. Indices: Students should understand index notation and be able to express a series of repeated multiplications in this way.	Indices. The fundamental theorem of arithmetic	NRICH 'Factors and Multiples Puzzle'. A challenging puzzle that asks students to arrange numbers in a table based on different headings, e.g., multiples of three. To differentiate this activity the teacher could place the headings on the table before giving to the students.		Logistics Manager "Counting in multiples saves quite a bit of time. If I know that each shelf has 15 boxes and each box contains 5 reams of paper, the I know straightaway that I have 75 Reams on each shelf without having to count each ream."
		F1.7 Prime factors	Write a number as the product of its prime factors. Use prime factor decomposition and Venn diagrams to find the HCF and LCM.	People use numbers and basic calculations daily. A market stall holder must quickly calculate the cost of a customer's order, a logistics manager has to order stock and divide the supplies so that they are never over- or under-	Writing addition signs or commas in place of multiplications signs when writing a number as a product of its prime factors.			NRICH 'Sieve of Eratosthenes'. This is an excellent way of students identifying prime numbers. This activity also helps students to understand what a prime number is.		Supply chain managers organise the movement of goods and materials from suppliers and manufacturers to customers. Salary: $£ \mathbf{2 4 , 0 0 0}$ to $£ 48,000$

$\begin{aligned} & \hline \text { Half } \\ & \text { Term } \\ & \hline \end{aligned}$	Unit Title	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
		H1.3 HCF and LCM	Write a number as the product of its prime factors. Find the HCF and LCM of two numbers.	stocked. There are many applications of basic calculations	Students might confuse the HCF with the LCM, especially when calculating from a Venn diagram.			NRICH 'How Much Can We Spend?' An activity based on lower common multiples. NRICH 'Take Three from Five' is an investigation that challenges students to find a set of five numbers, from which it is not possible to select a set of 3 numbers that sum to a multiple of 3 . Students get pieces of 'incorrect homework'. They need to identify the mistakes and correct the homework. Show students how to apply prime decomposition to be able to easily simplify fractions and hence use this as a 'trick' for division. Ask them to create 'difficult' division questions for each other to solve (such as 1512 $\div 54$) where, thanks to prime decomposition, they know there must be an integer solution. NRICH 'Factoring a Million'. NRICH 'Gaxinta'.	Things to Make and Do in the Fourth Dimension by Matt Parker Age 14+ This is the complete guide to exploring the fascinating world of maths you were never told about at school. Stand-up comedian and mathematician Matt Parker uses bizarre Klein Bottles, unimaginably small pizza slices, knots no one can untie and computers built from dominoes to reveal some of the most exotic and fascinating ideas in mathematics. Starting with simple numbers and algebra, this book goes on to deal with inconceivably big numbers in more dimensions than you ever knew existed. And always with something for you to make or do along the way Keywords Function-A special relationship where each input has a single output. Inverse - Inverse means the opposite in effect. The reverse of.	Sector: Delivery and storage Managerial Transport
		F1.5 Squares, cubes and roots	Find square roots and cube roots. Recognise powers of 2, 3, 4 and 5 . Understand surd notation on a calculator.	Using Mathematics: Real Life Applications Interior designers use square units to work out the area of floors to be tiled and walls to be painted. They then work out how much paint to buy and use the size of the tiles (also in quare units) to work out how many are needed	Forgetting to apply the priority of operations when working out calculations involving fractions.	From Key Stage 3 students should be confident with square and cube numbers, and know the first 15 squares, six cubes and their corresponding roots. Geometrically students should recognise the link between squaring a number and finding the area of a square from its length. Similarly they should make the link between the volume of a cube and its edge lengths.	Students will learn to differentiate and integrate terms that involve indices and they will develop the laws of indices to work with logarithms, which are used extensively at A level and beyond, for example linking to e, infinite series and solving differential equations. Indices are present in topics such as geometric series and binomial distribution, and the ability to manipulate expressions involving indices is an important algebraic technique.	The problem 'Power Mad' from NRICH gets students to investigate a range of patterns in powers. NRICH 'A Biggy'. A problem that will stretch students to think more deeply about the properties of numbers that have been raised to powers NRICH 'Negative Power’ is an interesting investigative problem involving negative indices and raising a power to a power. (Higher only) The 'RISPs Task 35 Index Triples' is a challenge that extends toward A level that investigates the effect of the order when writing numbers to the power of each other. To access this task, go to the RISPs homepage and then select 'Risps 1-40'.	square root - A square root of a number is a value that, when multiplied by itself, gives the number. cube root - The cube root of a number is a special value that, when used in a multiplication three times, gives that number. Highest common factor (HCF) - The greatest number that is a factor of all your chosen numbers lowest common multiple (LCM) - The smallest positive number that is a multiple of two or more numbers	Interior designer "I'm pretty good at estimating in quare units. I can usually look at a room and guess the area of the floor and walls quite accurately. Tiles are harder, I do rough sketches on squared paper to help me work out how many tiles of a particular size are needed to cover a floor area"
		F1.6 Index notation	Use index notation for powers of 10 . Use index notation in calculations. Use the laws of indices.		Use correct mathematical language and notation					
		H1.4 Calculating with powers (indices) H1.5 Zero, negative and fractional indices	Use powers and roots in calculations. Multiply and divide using index laws. Work out a power raised to a power. Use negative indices. Use fractional indices.		Students will struggle to identify the common base With questions like $36^{\wedge}(3 / 2)$ students might try to multiply 36 by $3 / 2$ or just be very unsure about how to start the question					supervise the layout and decoration of the inside of buildings. Salary: $£ 18, \mathbf{0 0 0}$ to $£ 45, \mathbf{0 0 0}$ Sector: Creative and media
		H1.6 Powers of 10 and standard form	Write a number in standard form.	Using Mathematics: Real Life Applications	Students might think that, for example, 0.8×105 is in standard form.	Place value and rounding through Key Stages 2 and 3.	Indices. These are reinforced early in the Core topics and are used	Converting standard form to ordinary numbers. Research data for very large	Base - The number that gets multiplied when using an exponent.	Astronomer

$\begin{aligned} & \hline \text { Half } \\ & \text { Term } \\ & \hline \end{aligned}$	Unit Title	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
			Calculate with numbers in standard form.	The study of stars, moons and plants involves huge numbers. Astronomers use standard form to write or type very large quantities. This makes it easier for them to compare the quantities and it allows them to calculate with and without calculators. The Sun has a mass of 1.988 x $10^{30} \mathrm{~kg}$. this is a number with 27 zeroes, and it would be clumsy and impractical to have to write it out each time you wanted to use it.	When multiplying or dividing numbers in standard form, students find it difficult to convert an answer like 36×107 into standard form. When rationalising a denominator, in a question like $5 / 75$, students will forget to simplify their final answer.	Significant figures. Index laws for multiplication and division.	extensively throughout the course. Applications within physics, chemistry, and biology	and small numbers such as the diameter of an atom, size of the smallest virus, number of atoms in a human body, diameter of the Earth NRICH 'Big and Small Numbers in the Living World'. Combining estimation and large numbers with problem solving skills to help contextualise the use of standard form.	Index - The index of a number says how many times to use the number in a multiplication. Power - The power (or exponent) of a number says how many times to use the number in a multiplication. Product - The answer when two or more values are multiplied together. standard form - A general term meaning "written down in the way most commonly accepted". scientific notation - Where a number is written in two parts: First: just the digits	"In astronomy we work with very large and very small numbers. They are 100000000000000000 000000 known stars alone! Imagin having to write this numer out in full every time you wanted to use it! It is much easier to write $1 x$ $10^{23^{\prime \prime}}$ Astronomers study the origin and structure of the universe, including its planets, stars, galaxies and black holes. Salary: $£ \mathbf{1 5 , 6 0 9}$ to $\mathbf{£ 6 0 , 0 0 0}$ Sector: Science and research
		H1.7 Surds	Understand the difference between rational and irrational numbers. Simplify a surd. Rationalise a denominator.	Using Mathematics: Real Life Applications Surds are only really used when you are doing mathematical calculations that require exact answers. Surds cannot really be used for practical purposes. You cannot tell a builder to cut a length of steel that is $\sqrt{2}$ metres long, because $\sqrt{2}$ is an irrational number; so you would be more likely to specify an approximate lengths of 1.41 metres	When rationalising a denominator, in a question like $5 / 75$, students will forget to simplify their final answer.	Squaring numbers and finding square roots. Using the laws of indices Prime factor decomposition Using Pythagoras' theorem. Cancelling fractions and equivalent fractions Expanding brackets and simplifying expressions (basic algebraic manipulation skills). The difference of two squares. (Students will be able to rationalise without knowing that they are using the factor pairs of the difference of two squares but, if they have previously met this topic, it is a good example of a technique being put into use in another context.)	Exact values of solutions are often asked for and these may need to be given in surd form. Complex numbers use similar techniques to the rationalising of the denominator. Binomial theorem (to approximate roots).	NRICH 'Trice' is a problem that can be solved using Pythagoras' theorem and leaving intermediate answers in surd form will allow students to obtain a precise solution. NRICH 'The Spider and the Fly' also uses Pythagoras' theorem and students could use surds but will need to convert them to approximate values to compare NRICH 'The Root of the Problem' will require students to practise rationalising binomial denominators. As an extension for students finding manipulation of surds quite straightforward, the task NRICH 'Irrational Arithmagons' should prove quite a challenge. Research the 'Geometric Square Root' construction technique described by Descartes (although not attributed to him). Create a presentation or leaflet explaining how the method works. For very able students a nice extension is to look at the formula for the Fibonacci sequence.	(with the decimal point placed after the first digit), Followed by: $\times 10$ to a power that will put the decimal point back where it should be ordinary numbers. Surd - A number that can't be simplified to remove a square root (or cube root etc) Rational Number - A number that can be made as a fraction of two integers (an integer itself has no fractional part).	Print works manager "This widths and lengths of A-series rectangular paper were developed using the ration 1: $\sqrt{2}$ to mathematically construct a rectangle of area $1 m^{2}$ (AO size). In real life paper is cut to exact millimetre size to AO is $841 \mathrm{~mm} \times 1189 \mathrm{~mm}$ rather than $841(\sqrt{2})$ whish is 1189.353606 ... mm." Pre-press operators work in the printing industry, getting artwork from a client and supplying the printing plates used on a press. Salary: $£ 16,000$ to $£ \mathbf{£ 0 , 0 0 0}$ Sectors: Computing, technology and digital Creative and media
AUT 2	5	F2.1 Algebraic expressions	Use correct algebraic notation.	Using Mathematics: Real Life Applications	Students may write terms with letter before	There are a few prior connections for this topic	At A level, the demand on students' algebraic	NRICH 'Crossed Ends'. There are many	Recommended Reading	Games designer

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \hline \text { Half } \\
& \text { Term } \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Unit } \\
& \text { Title }
\end{aligned}
$$ \& Key Knowledge/Content to learn and retain \& Essential Skills to acquire (subject \& generic) \& Link to intent and ethos \& Anticipated misconceptions \& Links to earlier KS \& Link to future KS \& Opportunity for stretch and high prior attainers \& Cultural Capital \& Career Link \\
\hline \& \& \& Factorise quadratics expressions of the form ${ }^{\prime} x^{\wedge}(2)^{\prime}+b x+c$. \& \& \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline \& \& H2.5 Linear sequences

H2.6 Non-linear sequences \& \begin{tabular}{l}
Find the general term or nth term of an arithmetic sequence. \\
Determine whether a particular number is a term of a given arithmetic sequence. \\
Solve problems using geometric sequences. \\
Work out terms in Fibonacci sequences. \\
Find the nth term of a quadratic sequence.

 \&

Using Mathematics: Real Life Applications \\
Finding a pattern and working out how the parts of the pattern fit together is important in scientific discovery. Scientists use sequences to model and solve real- life problems, such as estimating how quickly disease spread.

 \&

Students may think the first term of a sequence is u0 not u1. \\
Some may misunderstand what they have found when solving an equation for the nth term to find n . \\
Students may forget to divide the second differences by 2 to find the coefficient of n 2 in the nth term formula for a quadratic sequence. \\
A common error is to subtract the given sequence from the sequence an2 when finding an nth term of the form $u n=a n 2+b n+c$.

 \& This topic provides a good opportunity to return to work on basic calculations and properties of numbers. There are opportunities to consider how square and cube numbers are related to physical shapes and how a numerical sequence can be linked to geometrical or physical patterns. \&

This topic will be built upon in KS5. Having a strong understanding of this concept will be necessary for students to extend their knowledge in A level modules. In addition to the notation learnt at GCSE, students will also learn to describe sequences as arithmetic progressions. They will calculate terms in a sequence and the sum to n terms. \\
In addition to arithmetic progressions, geometric progressions are a further extension of this topic, which builds upon sequences such as $2,4,8$, 16, 32. Students will learn to calculate terms in a sequence and the sum to n terms, including the sum to infinity for converging sequences.

 \&

NRICH 'Seven Squares' task. The teacher notes with this resource suggest how to use this in the classroom, enabling the formulation of the position-to-term rule to naturally emerge from discussions on the construction of the sequence. (nrich.maths.org) \\
Search for any of the 'Zeno's Paradox' videos on the internet \\
NRICH 'Fibs' task. (nrich.maths.org) \\
NRICH 'Steel Cables' task. (nrich.maths.org) \\
NRICH 'Handshakes' task. (nrich.maths.org) \\
NRICH 'Mystic Rose' is a different form of the 'Handshakes' problem. (nrich.maths.org)
\end{tabular} \& \& \\

\hline \& \& H2.7 More expanding and factorising \& | Expand the product of two brackets. |
| :--- |
| Use the difference of two squares. |
| Factorise quadratics expressions of the form $x^{\wedge}(2)^{\prime}+b x+c$. | \& | Using Mathematics: Real Life Applications |
| :--- |
| Situations that involve motion, including acceleration, stopping distance, velocity and distance travels (displacement) can be modelled using quadratic expressions and formulae. | \& | Some students may write (a $+\mathrm{b}) 2=\mathrm{a} 2+\mathrm{b} 2$ |
| :--- |
| Some students may neglect to deal with the product of negative numbers correctly. | \& | The connections back to Algebra, are obvious as these ideas are just extended to quadratics in this chapter. However, more opportunities for generalising students' long multiplication methods are offered here and students are better equipped to consider more challenging '। think of a number...' problems. |
| :--- |
| There are several problems that use the knowledge of properties of shapes and formulae for calculating area that students will have met in Area. | \& | At A level these manipulation skills are essential. Students will be required to manipulate quadratics with ease between various forms and understand how these different forms connect to features of a quadratic's graph and their knowledge of transformations. They will also learn how to long divide polynomials in order to factorise expressions of higher degree than two |
| :--- |
| Students who work with grid expansion methods can adapt their grids to divide. Those that don't have a conceptual understanding of how the grids support multiplication, and hence division, often struggle to learn a long new algorithm, both in traditional format and employing the use of a grid. A fluency of expansion of two or more binomials, trinomials and larger expressions will be required. | \& | 'Finding Factors' from NRICH is a nice problem that could be used as an introduction to factorising quadratic expressions or to develop fluency in this skill. Once the pupils have played with this idea, they may want to create their own grids to give to another student to try. (nrich.maths.org) |
| :--- |
| NRICH has a collection of short problems that make use of expanding and factorising quadratics. They could be used individually or made into a race for pairs of students to solve. (nrich.maths.org | \& \& \\

\hline SPR 1 \& 5 \& F3.1- Frequency tables \& | Designing tables and data collection sheets. |
| :--- |
| Reading data from tables. | \& Using Mathematics: Real Life Applications \& Every data point needs a class interval in a data collection sheet. \& Addition of numbers. Counting tally symbols \& Histograms at A level introduce added complexities. Firstly, end points may be less obvious, and students may need to \& More interpretation questions would be useful, including asking pupils to work out averages, range, \& Recommend Reading \& | Newspaper editor |
| :--- |
| "when we have data, wee need to display it so that | \\

\hline
\end{tabular}

$\begin{aligned} & \hline \text { Half } \\ & \text { Term } \\ & \hline \end{aligned}$	Unit Title	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
								simple music with their creations! NRICH 'Ben's Game' is an excellent fractions-based activity that requires student to record their working effectively. It also covers factors and multiples as well as calculating with fractions. (nrich.maths.org)	What the Numbers Say: A Field Guide to Mastering Our Numerical World by Derrick Niederman Ages 17+ A decade ago, computer scientist Douglas Hofstadter coined the term innumeracy, which aptly described the widespread ailment of poor quantitative thinking in American society. So, in What the Numbers Say, Derrick Niederman and David Boyum present clear and comprehensible methods to help us process and calculate our way through the world of "data smog" that we live in. Avoiding abstruse formulations and equations, Niederman and Boyum anchor their presentations in the real world by covering a particular quantitative idea in relation to a context-like probability in the stock market or interest-rate percentages. And while this information is useful toward helping us to be more financially adept, What the Numbers Say is not merely about money. We learn why there were such dramatic polling swings in the 2000 U.S. presidential election and why the system of scoring for women's figure skating was so controversial in the 2002 Winter Olympics, showing us that good quantitative thinking skills are not only practical but fun. Keywords Paint technician "Every day customers bring me paints to match. I have to understand how changing the ratio of base colours affect the colour of the paint and how to scale the quantities up and down for larger or smaller amount of paint. IF I get it wrong, customers will have patches of different colours and their walls will look quite strange" Paint sprayers apply coatings and protective finishes to cars, vans, motorbikes and other vehicles. Salary: $\mathbf{£ 1 9 , 0 0 0}$ to $\mathbf{£ 3 0 , 0 0 0}$ Sector: Construction and trades Manufacturing Statistician "Statistics in the media are often Reported as percentages. This makes it easier to understand by percentages can also be misleading -600% sounds like a lot but it could just mean 3 out of 5 people interviewed"	
		H4.2 Ratios	Write ratios in the form $1: n$ or $n: 1$. Compare ratios. Find quantities using ratios. Solve problems involving ratios. Use bar models to help solve problems	Using Mathematics: Real Life Applications Ratio is used in many	Students may try to simplify ratios by dividing each side by a different number. Mixing units in a question	Identifying fractions from visual representations, and writing equivalent fractions. Finding fractions of quantities. Division into equal parts.	Trigonometry and sine rule. Constant of proportionality: integration and solving differential equations.	NRICH 'Speeding Boats'. A good investigation that students could work on in pairs or groups to deepen their understanding of ratio and proportion. NRICH 'Escalator'. This has similarities to Speeding Boats above and could be used as an additional activity. For both problems students may use a fraction		
		H4.3 Ratio and proportion	Convert between currencies and measures. Recognise and use direct proportion. Solve problems involving ratios and proportion.	Ratio is used in many different real-life situations. Converting between different currencies, working out which packet of crisps iis the best value for money, mixing large quantities of cement and scaling up a recipe to cater for more people all involve reasoning using ratio	Some students may fail to spot mixed units in ratio conversions. Students might think that numbers in direct proportion can both be increased/decreased by adding/subtracting the same amount.			approach rather than ratio so encouraging them to use ratio notation for an alternative solution would be useful. NRICH 'Golden Trail 1'. A collection of resources that lead students through a variety of examples where the golden ratio can be found. NRICH 'Ratio and Dilutions'. This is a STEMNRICH activity that provides a practical crosscurricular link to chemistry to help students connect their maths with other subjects. It has an interactive app that allows students to test out their concentration calculations and extends the principle to using two dilutions. Some students may find this quite difficult initially; it could be introduced using the much more simple NRICH 'Mixing Lemonade' activity as a starter.		
		F4.6 Fractions and percentages	Convert percentages to fractions and vice versa. Write one number as a percentage of another.	Using Mathematics: Real Life Applications	Students may think 15 as a percentage of 75	Completing the four rules with integers. Multiplying and dividing with decimals. Multiplying and dividing by powers of 10 .	Probability. More complex combinations of events are met in Statistics. Often these are best tackled in fraction form, so being able to convert from a probability given as a percentage is useful. Decision maths. Linear	NRICH 'Matching Fractions, Decimals, Percentages'. A game similar to pairs that gets students to match equivalent fractions, decimals and percentages. NRICH 'Doughnut Percents'. A silent group work activity that asks students to match		
		F4.7 Calculating percentages 1	Convert percentages to decimals and vice versa. Find a percentage of a quantity.		Students may calculate percentages over 100\% incorrectly.					

$\begin{aligned} & \hline \begin{array}{l} \text { Half } \\ \text { Term } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Unit } \\ & \text { Title } \\ & \hline \end{aligned}$	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
			Use percentages to solve problems. Calculate simple interest	Percentages are often used in daily life to express fractions. For example, you might see adverts claiming that 76% of pets prefer a particular brand of food for that 90% of dentist recommend a particular type of toothpaste. Sale price- reductions, discounts and interest rates are usually given as percentages			constraints expressed as percentages of the variables.	equivalent fractions, decimals and percentages. NRICH ‘One or Both'. A challenging activity where students have to work out how many people took an exam if they know how many people passed both and the percentage of students that passed each exam.	Denominator - The bottom number in a fraction. unit fraction - A fraction where the top number (the "numerator") is 1 numerator - The top number in a fraction. Reciprocal - The reciprocal of a number is: 1 divided by the number Simple interest - Interest calculated as a percent of the original loan.	Data analyst-statisticians collect numbers and statistics to identify trends, create models and present results. Salary: $\mathbf{£ 2 3 , 0 0 0}$ to $\mathbf{£ 6 2 , 0 0 0}$ Sector: Science and research
		F4.8 Calculating percentages 2	Calculate percentage increases and decreases. Use percentages in real-life situations. Calculate VAT (value added tax).		it is a common mistake to forget to add or subtract the percentage change from the original amount, or to give the total amount when you are only asked for the percentage change Some students may forget to add or subtract in working out, when breaking down a calculation into smaller parts.					
		H4.4 Percentages	Calculate using percentages and ratios. Work out percentage increases and decreases. Solve real-life problems involving percentages.		Students might forget to add or subtract the percentage change from the original amount. Some students forget that the amount they are working with in reverse percentage questions is not 100%.					
		H 4.5 Fractions, decimals and percentages	Calculate using fractions, decimals and percentages. Convert a recurring decimal to a fraction.		Students may multiply by 10 when trying to convert a recurring decimal with two or more recurring digits to a fraction.					
$\begin{aligned} & \text { SUM } \\ & 1 \end{aligned}$	$\begin{gathered} n \\ \frac{0}{0} \\ \frac{0}{6} \end{gathered}$	F5.1 Solving equations 1	Understand and use inverse operations. Solve simple linear equations.	Using Mathematics: Real Life Applications Accounting involved a great deal of mathematics. Accountants set up computer spreadsheets to calculate and analyse data. Programs such as Microsoft excel work by applying	Students sometimes use a trial and improvement approach rather than creating an equation and using the balancing method to solve it. Students may think that a negative answer will always be incorrect.	This chapter uses all the manipulation skills worked on in in key stage 3 algebra to help manipulate expressions including factorising and simplifying to solve a variety of equations	Solving forms a large part of the future Mathematics students will study. Students will learn how to manipulate equations containing a larger range of functions to find multiple solutions and have a greater understanding about the number of solutions in a given range..	NRICH 'Good Work If You Can Get It' is a challenging problem in terms of forming and solving. There is a lot of information to get through and students will need to define their own variables for the amount given to each man and the total amount. The trick to solving comes from	Recommended Reading	Accountant "Although the computer does the actual calculations, I must insert different equations to tell it what operations to perform and in which order to perform them. It is important to check that the equations are production
		F5.2 Solving equations 2	Solve two-step equations.	different equations to values in columns or cells,	Some students may use inverses in the wrong order.		The ideas surrounding inverses will also be	knowing the fraction of the total amount that each man	THE MATHEMATICS OF CHRISTMAS	the correct answers, though."
		F5.3 Solving equations with brackets	Solve linear equations with brackets. Solve equations with unknowns on both sides.	so you need to know what equations or formulae to use to get the result you need	Some students may leave the second term inside the bracket as it is, or add it to the multiplier Not understanding that $5 x$ is smaller than $-3 x$.		covered in greater detail with students learning about the domain and range of functions as well as the restrictions on these that must sometimes be in place for an inverse to exist.	is due based on the number of days he worked. (nrich.maths.org)	DR HANNAH FRY DR THOMAS \& OLÉRON EVANS The Indisputable Existence of Santa Claus by Hannah Fry and Thomas Oléron Evans Age 11+	Management accountants look after a company's finances and find ways to improve profitability. Salary: $£ \mathbf{2 2 , 0 0 0}$ to $\mathbf{£ 5 5 , 0 0 0}$ Sector: Business and finance Managerial
		H6.1 Linear graphs	Find the gradient and y intercept from a linear equation. Rearrange an equation into the form $y=m x+c$. Compare two graphs from their equations. Plot graphs with equations $a x+b y=c$.	Using Mathematics: Real Life Applications	Students may use equations in different forms to compare graphs or find gradient and y -intercept values. Plotting x and y in the wrong directions. Plotting x and y in the wrong directions.	This chapter provides ample practice at rearranging linear equations, e.g. to turn $2 x+$ $3 y=25$ into the form $y=m x$ $+c$. For questions where graphs are drawn for students, they should be encouraged to check that their rearranged equation is plausible, e.g. the gradient has the correct sign.	n linear programming (using graphs to find the optimal solution to a problem), we draw graphs with 'constraints' represented as straight lines. Doing so quickly and accurately is key. These are frequently in the form ax + $b y=c$, rather than $y=m x+$ c.	The computer activity NRICH 'Diamond Collector' provides good practice at working out equations of lines in a game context that requires mathematical creativity. An unusual use of negative reciprocals is considered in the problem NRICH 'Twisting and turning'	How do you apply game theory to select who should be on your Christmas shopping list? Can you predict Her Majesty's Christmas Message? Will calculations show Santa is getting steadily thinner shimmying up and down chimneys for a whole night - or fatter - as he tucks into	Architect "When designing a new building, I use graphs to help identify and describe the structural properties the building needs to have." Architects design new buildings and the spaces around them, and work on

$\begin{aligned} & \hline \text { Half } \\ & \text { Term } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Unit } \\ & \text { Title } \\ & \hline \end{aligned}$	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
		H6.2 More linear graphs	Sketch graphs using the gradient and intercepts. Find the equation of a line, given its gradient and one point on the line. Find the gradient of a line through two points.	This is a photograph of the building nicknamed the Gherkin in London. The curves and lines of the bui8lding were designed using complex equations and their graphs. Architecture is just one of many professions in which people plot and use graphs in their work			Finding and using the equations of tangents and normals is a major part of the use of calculus. We frequently know the gradient of the line as well as a single point it passes through, so finding the equation of the line relies on the ideas in this topic. In A level we make much more use of the tangents to circles, which are straight lines. The concepts of gradients and coordinates are used heavily in vector methods, which are particularly helpful in solving problems involving straight lines in three dimensions	The NRICH 'Reflecting Lines' activity gets students to think about the equation of lines that have been reflected in the y-axis. In particular, it should encourage students to think about what the gradient represents and how a reflection in the vertical axis changes the gradient	a mince pie and a glass of sherry in billions of houses across the world? Full of diagrams, sketches and graphs, beautiful equations, Markov chains and matrices, this book brightens up the bleak midwinter with stockingfuls of mathematical marvels. Mathematics has never been merrier.	the restoration and conservation of existing buildings. Salary: $£ \mathbf{£ 0 , 0 0 0}$ to $£ \mathbf{6 0 , 0 0 0}$ Sector: Construction and trades Creative and media
		F5.4 Introducing inequalities	Use correct notation to show inclusive and exclusive inequalities. Show inequalities on a number line. Write down whole numbers which satisfy an inequality. Solve simple linear inequalities.	Using Mathematics: Real Life Applications Inequalities are one way of showing the ranges of	Some students may forget what is meant by the term integer, or forget that 0 is an integer value. Using inequality signs incorrectly	This topic relies heavily on skills learnt in previous topics. Most notably, pupils should be secure in their ability to solve and draw linear equations	In Decision Maths, linear programming extends the work on graphing linear inequalities to find optimal solutions given a number of constraints. Inequalities feature in many A level questions and quadratic inequalities have much greater prominence.	NRICH 'Inequalities' activity uses inequalities in the formulation of a problem involving marbles that can be solved by logical thinking	HENORT1 IUN SIGWIRI \qquad Seventeen Equations that Changed the World by Professor Ian Stewart (Author) From Newton's Law of	Quality Controller "I work in quality control in food standards. One of my jobs is to check that the quality and size of the ingredients match the details shown on the labels" Quality control assistants check that a company's services or products meet necessary standards.
		F5.5 More inequalities	Solve two-sided inequalities.	values that have to be met and considered in running a successful business. For example, a business might want wastage to be less than a certain figure, or profit to be great for equal to a particular amount	Some students may forget to do the same thing to all three parts of a two-sided or double inequality. Students may forget to change the direction of the inequality sign when multiplying or dividing by a negative number.				Gravity to the Black-Scholes model used by bankers to predict the markets, equations, are everywhere -- and they are fundamental to everyday life.Seventeen Equations that Changed the World examines seventeen ground-breaking equations that have altered the	Salary: $\mathbf{£ 2 0 , 0 0 0}$ to $\mathbf{£ 3 0 , 0 0 0}$ Sector: Administration Engineering and maintenance Manufacturing
		F5.6 Using formulae	Substitute values into formulae and solve equations. Change the subject of a formula. Know the difference between an expression, an equation and a formula.	Using Mathematics: Real Life Applications Vets use formulae to make sure they are giving animals the correct dosage of medicine for their age and mass. A poodle weighing 6 kg needs a far smaller does of medicine than a 35 kg retriever	Applying inverse operations in the wrong order. Making mistakes with signs when multiplying or dividing with negative numbers.	Since this is a chapter on formulae it has connections with all areas of mathematics where you are required to calculate an answer given several inputs. During this chapter your students will be revisiting the process of calculating areas, perimeters, volumes, solutions to quadratic equations (and looking forward to using trigonometric functions, Pythagoras' theorem and equations of straight-line graphs).	Students looking further ahead will need to be fluent in their use of all the formulae mentioned in this chapter, particularly those relating to equations of motion and calculus topics. A level students will be required to rearrange formulae with the variable appearing several times, for example, rearrange a formula containing a quadratic term, say $\times 2$, to make x the subject. Further to this, recurrence relations will be tied together with different types of sequences where students will be required to recognise more than one way of rearranging the subject to give a recurrence	The activity NRICH 'How Do You React?' could link this section with Interpretation of graphs. The students are required to come up with their own formula for this situation Links can be made forward with the activity NRICH 'Making Maths: Make a Pendulum' and an investigation, where you drop an object from varying heights and find the time taken to fall. This data can then be plotted and students could come up with a formula to describe this situation	course of human history. He explores how Pythagoras's Theorem led to GPS and Satnav; how logarithms are applied in architecture; why imaginary numbers were important in the development of the digital camera, and what is really going on with Schrödinger's cat. Entertaining, surprising and vastly informative, Seventeen Equations that Changed the World is a highly original exploration -and explanation -- of life on earth. Keywords Equation - An equation says that two things are equal.	Veterinary surgeon "I need to make sure I give the animals I treat the correct amount of medicine. I do this by using formulae that take into account their age, mass and the ratio between prescribed medicine" Vets diagnose and treat sick or injured animals. Salary: $£ \mathbf{3 0}, \mathbf{0 0 0}$ to $\mathbf{£ 5 0 , 0 0 0}$ Sector: Science and research Animal care

$\begin{aligned} & \hline \text { Half } \\ & \text { Term } \end{aligned}$	$\begin{aligned} & \hline \text { Unit } \\ & \text { Title } \\ & \hline \end{aligned}$	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
			Identify the line of symmetry of a quadratic graph. Interpret quadratic graphs relating to real-life situations.	patterns from sets of data. The nature of the data and the relationship between values reveals the shape and form of the graph			of the type: given two graphs $y=f(x)$ and $y=g(x)$ on the same pair of axes, what do the number of intersections mean for the solutions of the equation $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$? From an application point of view, simple harmonic motion, projectiles and parabolic motion are studied and have foundations in this chapter	As an introduction to the topic of reciprocal graphs this NRICH 'More Realistic Electric Kettle' activity could be used. This activity also has connection to a task that could happen in the students' science lessons and offers an opportunity to combine such a lesson. The students get a chance to plot a curve and find a way to figure out the equation of the line The NRICH 'Guessing the Graph' activity can be used for students to make their own data, plot the data and use their knowledge of the graphs of different functions to suggest possible curves to fit to the data. This NRICH 'What's That Graph?' activity can be used to draw connections between the physical world and the mathematics the students have covered in this chapter.	Trajectory - The path of an object with mass, such as a kicked ball. Asymptotes - A line that a curve approaches as it heads towards infinity.	Seismologists study shock waves created by earthquakes and volcanic activity. They also work in oil, gas and minerals exploration. Salary: $\mathbf{£ 2 0 , 0 0 0}$ to $\mathbf{£ 5 0 , 0 0 0}$ Sector: Science and research Environment and land
		H6.7 Cubic and reciprocal graphs	Draw graphs of cubic functions. Solve cubic equations using graphs. Draw graphs of reciprocal functions. Recognise a graph from its shape.		Students may not use all the information in an equation to match a graph to its equation					
		H6.8 More graphs	Interpret linear and nonlinear real-life graphs. Draw the graph of a circle.		Understand and be able to define the meaning of correlation. Manipulation of surds.					
$\begin{gathered} \hline \text { SUM } \\ 2 \end{gathered}$		F6. 1 Properties of shapes	Solve geometric problems using side and angle properties of quadrilaterals. Identify congruent shapes.	Using Mathematics: Real Life Applications Many people use geometry in their jobs and daily lives. Artists, craftspeople, builders, designers, architects and engineers use shape and space in their jobs, but almost everyone uses lines, angles a, patterns and shapes in different ways everyday	Missing lines of symmetry or thinking parallelograms have lines of symmetry.	This topic provides ample practice for mental methods of addition and subtraction. Students could also practise measuring lengths and angles by checking the precision of some hand drawn shapes: is a shape with four sides varying between $6.9-7.1 \mathrm{~cm}$ and $89-91^{\circ}$ really a square?	In calculus students will learn to use perpendicular and parallel lines when working out the equations of tangents and normals. Later in calculus, students will learn to calculate the volumes of solids created by revolving a curve around an axis through 360°. Students will learn to classify functions as 'odd' or 'even' based on the symmetry properties of their graphs.	Quadrilateral Rummy, in the ATM book Geometry Games. A variation is NRICH 'Quadrilaterals Game'. NRICH ‘Quadrilaterals’ asks students to find as many different quadrilaterals as possible by joining dots on the circumference of a circle. The problem initially starts with a circle with eight evenly spaced dots, but is easily adapted for other numbers of dots. This problem can be used with students of all levels to revisit vocabulary, then using the angles of isosceles triangles to work out the angles in each quadrilateral and start to explore the properties of cyclic quadrilaterals (Higher only). A slightly more structured version of this activity is NRICH 'Cyclic Quadrilaterals'. (nrich.maths.org)	FLATTERLAND \qquad Flatterland by lan Stewart Age 13+ In 1884, Edwin A. Abbott published "Flatland" ${ }^{[}$; a brilliant novel about mathematics and philosophy that charmed and fascinated all of England. Now, Ian Stewart has written a fascinating, modern sequel to Abbott's	Civil Engineer "I use CAD package to plot lines and angles and show the direction of traffic flow when I design new road junctions" Civil engineers design and manage construction projects, from bridges and buildings to transport links and sports stadiums. Salary: $\mathbf{£ 3 0 , 0 0 0}$ to $£ \mathbf{7 0 , 0 0 0}$ Sector: Construction and trades Engineering and maintenance
		F6.2 Angles in parallel lines	Understand and use the angle properties of parallel lines. Find missing angles using corresponding and alternate angles.	Using Mathematics: Real Life Applications	Failing to see Z-shapes or F shapes and so not deducing the location of alternate or corresponding angles correctly, particularly when there are two or more diagonals across the parallel lines	This connects directly to Shapes and solids, in which students learned about properties of shapes and that interior angles of a triangle sum to 180°. It also uses the concepts learned in Equations regarding the	These basic facts are still used in problem-solving at A level. 'Vertically opposite angles are equal' and 'the sum of angles on a straight line is 180° are both used in vectors work, and numerous basic facts and	NRICH 'Notes on a Triangle' uses a beautiful René Jodoin film as a prompt for students to think about a whole host of properties of triangles and other shapes.	book. Through larger-thanlife characters and an inspired story line, "Flatterland" explores our present understanding of the shape and origins of the universe, the nature of space, time, and matter, as	Structural Engineer "I had to work quite carefully with the 360 degrees around the centre to play each of the 32 pods correctly on the London Eye"

$\begin{aligned} & \hline \text { Half } \\ & \text { Term } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Unit } \\ & \text { Title } \\ & \hline \end{aligned}$	\qquad F6.3 Angles in triangles	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
								NRICH 'Terminology'. This problem involves using angle properties of an equilateral and isosceles triangle, as well as angles along a straight line, to form some algebra	well as modern geometries and their applications. Mathematics and the Physical World	Structural engineers help to design and build large structures and buildings, like hospitals, sports stadiums and bridges. Salary: $£ \mathbf{£ 8 , 0 0 0}$ to $\mathbf{£ 5 0 , 0 0 0}$ Sector: Construction and trades Engineering and maintenance
							In NRICH 'Cyclic Quadrilaterals', the first part of each of the questions requires students to draw isosceles triangles on different dotty circles, and work out the angles	Morris Kline		
							Tessellations make an interesting investigation and students could now think about how angle facts can help them know whether a regular shape tessellates or not. NRICH 'Semi-regular	Mathematics and the Physical World by Morris Kline Age 13+ A stimulating account of development of basic mathematics from		
							Tessellations' has some interesting additions to the problem, tessellating two or more regular polygons together. It also has a very good interactive program for testing ideas.	geometry and trigonometry, to calculus, differential equations and non-Euclidean geometries. Also describes how maths is used in optics, astronomy, motion under the law of gravitation, acoustics,		
							'Simple Quadrilaterals Tessellate the Plane' is another interesting investigation in why we can tessellate any quadrilateral. (cut-the-knot.org) For students who enjoy tessellating you may wish to extend them by looking	electromagnetism, and other aspects of physics. EUCLID'S WINDOW momen		
							at Penrose tilings and further consolidating their knowledge of angles.			
								Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace by Leonard Mlodinow Age 14+ Anyone who thought geometry was boring or dry should prepare to be amazed. Despite its worthy cover this book is exactly what its title says - a story and the plot of this story		
							NRICH ‘Tilted Squares' has interactive resources available to explore tilted squares and methods for calculating their area in detail that may be of use to		Navigation officer "I use Pythagoras' theorem to help me navigate the ship... I need to know how far away we are from port and I use the theorem to calculate this..."	
							you. Students sometimes struggle with the idea of a tilted square and the supporting animations			

$\begin{gathered} \hline \text { Half } \\ \text { Term } \end{gathered}$	$\begin{aligned} & \hline \text { Unit } \\ & \text { Title } \end{aligned}$	Key Knowledge/Content to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to earlier KS	Link to future KS	Opportunity for stretch and high prior attainers	Cultural Capital	Career Link
			Solve problems using Pythagoras' theorem.	Builders, carpenters, garden designers and navigators all use Pythagoras' theorem in their jobs. It is a method based on right angled triangles that helps them to work out unknow lengths.		sums of the semicircles on the other two sides? By exploring this problem you can link back to work on area of circle sectors in Area. There are also many opportunities that are used in this chapter to explore area and perimeter problems for regular and composite shapes now pupils are better equipped with skills to find missing lengths associated with right-angled triangles	centre and a point on the curve and deducing the equation of the circle. Less direct is its application to deriving trigonometric identities, notably: $\frac{\sin \theta}{\cos \theta}=$ $\tan \theta$ and its use in deriving the compound angle formulae. It will also be used to calculate the magnitude of vectors in 2 D and 3 D , and hence many other values associated with compound measures	make the idea very clear. Using dotted squared paper rather than standard squared paper may also make things easier. These tilted squares can be used to derive and prove Pythagoras' theorem in different ways should you wish to extend the most able students. Once pupils are confident using Pythagoras' theorem an appropriate extension might be to consider different ways in which the theorem can be proved. There are multiple ways the theorem can be proved and you can search for these proofs online. For example, NRICH 'Pythagoras Proofs', the first of which comes from the tilted squares problem NRICH 'Nicely Similar' is a problem students will have to think carefully about what information they have been given and label the lengths of the two rightangled triangles in their sketch carefully. They will need to compare the three triangles they know and appropriately form and solve the equations to find the missing lengths. This problem can be used to revise similarity. NRICH 'Liethagoras' activity: in which an alternative theorem based on right-angled triangles is offered for students to prove or disprove	involves life, death and revolutions of understanding and belief. It stars the some of the most famous names in history, from Euclid who laid the logical foundations, to Albert Einstein, who united space and time in a single non-Euclidean geometry. It offers an alternative history of mathematics, revealing how simple questions anyone might ask about space - in the living room or in some other galaxy - have been the hidden engines of the highest achievements in science and technology. Keywords Congruent - The same shape and size (but we are allowed to flip, slide or turn). Similar - When one shape can become another after a resize, flip, slide or turn. Diagonal - A line segment that goes from one corner to another, but is not an edge. Bisect - To divide into two equal parts. Parallel lines - Lines on a plane that never meet. They are always the same distance apart alternate angles - When two lines are crossed by another line (the Transversal), a pair of	Merchant Navy deck officers look after the day-to-day running and navigation of ships, and take care of passengers and cargo. Salary: $£ \mathbf{1 2 , 7 0 0}$ to $£ \mathbf{4 0 , 0 0 0}$ Sector: Transport Emergency and uniform services
		H5.6 Trigonometry 1 H5.7 Trigonometry 2	Use trigonometric ratios to find lengths in a rightangled triangle. Use trigonometric ratios to solve problems. Find angles of elevation and angles of depression. Use trigonometric ratios to calculate an angle in a right-angled triangle. Use trigonometric ratios to solve problems. Know the exact values of the sine, cosine and tangent of some angles.	Using Mathematics: Real Life Applications Trigonometry means 'triangles measurements' and is very useful for finding leghts of sides and sizes of angles of triangles. Trigonometry is used to	Students may not rearrange the equation correctly when the unknown is the denominator of the fraction. Students may fail to use the inverse function on the calculator.	There are many opportunities to combine previous concepts covered at key stage 3 and connect geometric ideas. Opportunities should be taken to look at general problems based on rightangled triangles to encourage students to identify the different methods available to them in solving and what information is required to apply each one..	Trigonometry forms a large part of the A level syllabus. Alongside the 2D and 3D problem-solving applications, students will explore the domain and range of each function in detail considering the features of each one. Students will learn to solve more complicated equations involving trigonometric functions and list all solutions in a possible domain. Knowledge of identities will be used to manipulate expressions and reciprocal functions will be used to extend these ideas.	NRICH 'Where Is the Dot? is an animation that could be used to explore what the trig functions store for angles greater than 90°. Students can make their own clinometers using NRICH 'Making Maths: Clinometer' MEP: Trigonometry Unit 4: Activity 4.3 Clinometers	angles, on the inner side of each of those two lines, but on opposite sides of the transversal are called Alternate Angles. corresponding angles When two lines are crossed by another line (which is called the Transversal), the angles in matching corners are called corresponding angles Exterior angle - The angle between any side of a shape, and a line extended from the next side.	Geologist "I use a theodolite to work out the height of mountains. You basically point it at the top of the mountain. The theodolite uses the principles of trigonometry to measure the angles and the distance" Geoscientists study the Earth's structure and formation, and analyse rocks to explore its natural mineral and energy resources. Salary: $£ 28,000$ to $£ 42,000$

