Mathematics is the music of

reason

Long Term Plan Year 11 Mathematics

Half Term	Unit Title	Key	Essential Skills to	Link to intent and	Anticipated	Links to previous KS	Link to future KS	Opportunity for	SMSC & British	Cultural Capital	Career Link
		to learn and retain	acquire (subject & generic)	ethos	misconceptions			attainers	Values		
AUT 1		to learn and retain standard form Similarity	generic) Work with numbers greater than 1 in standard form Work with numbers between 0 and 1 in standard form Compare and order numbers in standard form Mentally calculate with numbers in standard form Add and subtract numbers in standard form Multiply and divide numbers in standard form Identify similar shapes Work out missing sides and angles in a given pair of similar shapes Establish a pair of triangles are similar Understand the difference between congruence and similarity Understand and use conditions for congruent triangles	The study of stars, moons and planets involves huge numbers . Astronomers use standard form to write or type very large quantities. This makes it easier for them to complare the quantities and it allos them to calculate with and wwithout calculator. The Sun has a mass of 1.988 x 10 ³⁰ kg. This is a number with 27 zeros and it would be clumsy and impractical to have to write it out each time you wanted to use it. When you enlarge a photo, project and image onto a screen or make scaled models youoare dealing with similarity. Many toys and other objects are scaled, but similar, versions of larger objects from real life	That you move the decimal poin Students may still hold misconceptions related to the first index laws, thinking that 10n × 10m = 10mr ather than 10(n + m) and similar for division. Again by encouraging student. Some students may not fully appreciate the need for standard form, particularly in writing numbers such as 300 Labelling: students need to be fluent in labelling triangles and general polygons in a consistent way Ratio and proportion: students do not always use the correct terminology	 How to multiply and divide by powers of ten, applying their understanding of place value. How to use the four arithmetic operations to calculate efficiently with decimals. How to round to a given number of significant figures. That multiplication and division are commutative. How to use the index laws when multiplying and dividing How to label angles correctly. What the symbols corresponding to parallel, perpendicular and equality look like on a diagram. How to prove that two triangles are congruent. How to solve simple linear equations. How to recognise numbers in equivalent ratios 	Indices. These are reinforced early on in the Core topics and are used extensively throughout the course. Applications within physics, chemistry and biology. The effect of increasing a length by a factor and how that changes the area and volume is studied in the topic of differentiation under rates of change. In addition to this, matrices can be used to describe enlargements of objects described in two and three dimensions	attainers Speed of light (within compound measures, i.e. speed, distance and time). Further indices laws (fractional). Further indices laws (fractional). Students could explore the NRICH 'Matter of Scale' activity to provide another proof of Pythagoras' theorem. The notion of similar triangles is central to the ideas of Trigonometry and used in some parts of the proofs of the circle theorems		The Penguin Dictionary of Curious and Interesting Numbers by David Wells	Astronomer Alternative titles for this job includeAstrophysicist Astronomers study the origin and structure of the universe, including its planets, stars, galaxies and black holes. Aerospace engineer Aerospace engineers design, build and maintain planes, spacecraft and satellites

AUT 2	Working with Circle	Recognise and label	Ordering the right	students do not state	Properties and	Students will start to	NRICH 'Curvy Areas' is	Infinite Powers by	Farm manager
	working with circle	parts of a circle	quantity of turf for a	the units when	definitions of	study calculus at A	particularly good for	Steven Strogatz	Farmers and farm
			sports field, preparing	finding the length of	polygons, particularly	level and will learn	exploring compound		managers grow crops
		Calculate fractional	and working out how	an unknown	triangles and	now to use	circles and parts of		and raise farm
		parts of a circle	much fertiliser is	Students struggle to	quadrinaterais.	calculate the area	circles. It also has		production.
			needed to treat a	remember the	Properties of circles.	under a curve. It is	opportunities to		
		Calculate the lengths	field crop all require	different formulae for	_	here that many will	revise constructions		
		UI dii dic	knowledge and	finding area	Convert metric units	first consider area to	at the same time. You		
		Calculated the area of		students confuse the	or length.	infinitely thin strins	students are		
		a sector		order of operations	Convert metric units	rather than the	surprised when the		
				when calculating the	of area.	number of square	areas are all equal.		
		Understand and use		area of a circle		units that fill the	Students can then get		
		cylinder and a cone		Students struggle to	Substitute into	space.	experience in		
				identify the known	and expressions.		types of problems		
		Understand and use		shapes that make the			based on the number		
		the volume of a		composite shapes and	Solve equations		of sections the		
		sphere		miss parts of the shapes out of their	formed from area		diameter is split into		
		Understand and use		calculations.	the value of the				
		the surface areas of a			unknown (and				
		sphere			recognise that where				
		Understand and used			lengths of shapes are				
		the surface area of a			the unknown must be				
		cylinder and a cone.			positive)				
			Vectors are used in	Confusing y and y	Docio orithmotio skills	This is a relatively	The NDICU (Vester		Airling pilot
		represent vectors	sure that two ships	values	including addition.	straightforward topic	Journeys' task can be		Airline pilots fly
		Use and read vector	don't crash into each		subtraction,	at GCSE that will be	extended into a		passengers and cargo
	Vectors	notation	other. They are used	When working with	multiplication and	built upon at KS5.	second problem,		to destinations
			to model objects	column vectors, some	division (for finding fractions of amounts)	Having strong	NRICH 'Vector Walk',		around the world.
		Draw and understand	with varving amounts	x- and y-axis and	of both positive and	concept will be	possible		
		vectors multiplied by	of friction. They can	which direction of	negative numbers.	necessary for	combinations of		
		a scalal	be used to work out	movement the		students to extend	vector addition to		
		Draw and understand	how far an object can	values refer	How to plot	their knowledge at A	arrive at a new		
		addition of vectors	over and much more	Assuming all vectors	quadrants	column vectors and	allowing multiple uses		
				start at the origins	understanding that	displacement vector	of the two vectors,		
		Draw and understand			the x- and y-	notation, students	students can also		
		addition and		Understanding that	coordinates are	will also learn to write	discover vector		
		subtraction of vectors		narallel vectors	horizontal and	vectors in their	scalar as repeated		
				paranervectors	vertical directions	component form and	addition.		
				Students may not	from the origin	extend in to 3D. They	(nrich.maths.org).		
				understand what –a	Desis actis in shudin s	will also work mainly			
				in relation to a.	connections to	and learn to write the			
					proportion e.g. 2 : 3 is	equation of a straight			
				Understanding that	2/5 and 3/5 of the	line using a position			
				addition is	whole.	vector, displacement			
				vector arithmetic	How to solve simple	also convert between			
					linear equations	Cartesian and vector			
						forms of straight			
						lines. Students may			
						learn additional			
						vector operations,			
						work with vector			
						equations of planes			
						linear algebra			
						knowledge to			
						matrices. Students			
						may also use vectors			
						when they look at			

						acceleration in a			
						given direction and			
						form vector equations			
						of straight lines			
						where the scalar			
						represents time			
SPR	Simultaneous	Understand that	Accounting involves a	Lack of understanding	Use variables	Solving forms a large	NRICH 'Matchless'.		Accountant
	equations	equations can have	great deal of	that adding a	correctly to form	part of the future	Once students are		Inserting different
		more than one	mathematics.	negative is equal to	algebraic expressions.	Mathematics	confident with ideas		equations
		solution	Accountant set up	subtraction and so		students will study.	relating to solving		Focusing on the order
			computer	on.	How to factorise	Students will learn	simultaneous		of operations
			spreadsheets to		quadratics in the	how to manipulate	equations this is a		checking that the
		Determine whether a	calculate and analyse	Not applying an	form: x2 + bx + c	equations containing	nice problem for		equations are
		given (x, y) is a	data. Programs such	operation to every		a larger range of	them to attempt. The		producing the correct
		Solution to a pair of	at Microsoft excel	term on both sides of	Inverse operations.	functions to find	challenge here is that		answers
		inear simulaneous	work by applying	the equation but to		multiple solutions and	students will need to		
		equations	different equations to	selected terms	How to graph linear	have a greater	set up the equations		
			values in columns or	Less du stie ste	functions.	understanding about	to begin with before		
		Solve a pair of linear	cells, so you needs to	Leaving their	Llow to graph	the number of	forming their own		
		simultaneous	or formulae to use to	solutions to	now to graph	range It is important			
		equations by	get the result you	equations incomplete	quadratic function	that students	wish to remove some		
		substituting a known	needed	by forgetting to find		understand the	cards for some groups		
		variable	necucu	the value of the		connection to	to promote a		
				second variable.		graphical	discussion of the		
		Solve a pair of linear				representations of	amount of		
		simultaneous		Wanting to give exact		functions and what	information required		
		equations by		or decimalised		the solutions mean	in class.		
		substituting an		answers rather than		for future study, i.e.	(nrich.maths.org)		
		expression		working on their		that for a y = f(x) in			
				solutions in fractional		solving f(x) = 0 they			
		Solve a pair of linear		form.		are finding the			
		simultaneous				intersection of the			
		equations using				curve with the x-axis.			
		graphs				They will also extend			
						their work on			
		Solve a pair of linear				higher order			
		simultaneous				nolynomials			
		equations by				including cubics, and			
		subtracting equations				learn about other			
						features of graphs.			
						The ideas surrounding			
						inverses will also be			
						covered in greater			
						detail with students			
						learning about the			
						domain and range of			
						tunctions as well as			
						these that must			
						sometimes be in			
						place for an inverse to			
						exist. Finally, the			
						work students start			
						on numerical			
						methods will be			
						covered in more			
						detail at A level and			
						students will learn a			
						iterative mothods			
						Understanding why			
						iterative methods are			
						still needed for			
						functions we can't			
						easily solve sets the			
						groundwork for			
						future work on this			
						topic at A level.			

	Non-linear graphs	Plot and read from quadratic graphs Plot and read from cubic graphs #Plot and read from reciprocal graphs Recognise graph shapes Identify and interpret roots and intercepts of quadratics	Graphs are used to process information, make predictions and generalise patterns from sets of data. The nature of the data and the relationships between values reveals the shape and form of the graph.	Students find it difficult to make connections between the algebraic world and the geometry it can describe The main misconception when moving from equation to the graph has been students using their calculators to calculate a table of values for a quadratic function and incorrectly squaring negative numbers When students move from graphing linear functions to quadratic functions to quadratic functions they sometimes have a desire to connect the points with straight lines and consequently the plotted points of their quadratic are connected with line segments rather than a smooth curve Students may not have a good grasp of what the word 'reciprocal' means.	Plot and interpret straight-line graphs including identifying gradients and y- intercepts. Solving linear equations to find the y or x coordinate given the x or y coordinate respectively. Identifying or constructing parallel lines given an equation of a straight line (in any form). Generate a table of values from a given function.	A level mathematics further develops the connections between algebra and geometry. Students who go on to A level will be expected to be fluent in moving between descriptions of the function as a graph and as an equation, and will further their knowledge of circles not centred on the origin. Further to this they will need to answer questions of the type: given two graphs y = f(x) and y = g(x) on the same pair of axes, what do the number of intersections mean for the solutions of the equation f(x) = g(x)? From an application point of view, simple harmonic motion, projectiles and parabolic motion are studied and have foundations in this chapter	NRICH 'More Realistic Electric Kettle' activity could be used. This activity also has connection to a task that could happen in the students' science lessons and offers an opportunity to combine such a lesson. The students get a chance to plot a curve and find a way to figure out the equation of the line. (nrich.maths.org)	Why do Buses Come in Threes? by Rob Eastaway and Jeremy Wyndham	Seismologist Seismologist study shock waves created by earthquakes and volcanic activity. They also work in oil, gas and minerals exploration.
	Expanding and factorising	Expand binomials (R) Factorise quadratic expressions Solve equations equal to 0 Solve quadratic equations by factorisation	including acceleration, stopping distance, velocity and distance travelled (displacement) can be modelled using quadratic expressions and formulae	Common algebraic misconceptions related to finding the product of expressions missing the product of one or more pairs of terms when expanding the product of two or more polynomials. Confusing product with sum, particularly when negatives are involved Squaring both terms in a perfect square rather than expanding the binomial product The polarities of the constant terms of the linear factors also cause students problems	How to simplify expressions by collecting like terms including those with different powers. How to simplify products of expressions	At A level these manipulation skills are essential. Students will be required to manipulate quadratics with ease between various forms and understand how these different forms connect to features of a quadratic's graph and their knowledge of transformations. They will also learn how to long divide polynomials in order to factorise expressions of higher degree than two. GCSE Mathematics for Edexcel 96 © Cambridge University Press, 2015 Students who work with grid expansion methods can adapt their grids to divide. Those that	'Factorisable Quadratics' from NRICH encourages students to think about whether all quadratics can be factorised and to develop a better understanding of the effect that changing the coefficients has on the factorised form. A selection of the questions can be used with Foundation students (where the coefficient of x2 is 1) or with Higher students (for any coefficient of x2). The students can try some of the suggested examples and then swap to assess if each has found all possibilities. (nrich.maths.org)	How to Solve It by George Polya	Forensic collision investigator Forensic collision investigators use science and engineering to investigate the causes of road traffic and vehicle related incidents.

			don't have a		
			concentual		
			understanding of how		
			the gride support		
			multiplication and		
			have division often		
			nence division, often		
			struggle to learn a		
			long new algorithm,		
			both in traditional		
			format and employing		
			the use of a grid. A		
			fluency of expansion		
			of two or more		
			binomials, trinomials		
			and larger		
			expressions will be		
			required. A level		
			students often		
			struggle with simple		
			ovpansions		
			expansions,		
			concluding for		
			example that (x + 5)2		
			$= x^{2} + 25 \text{ or } (x + 3)(x^{2})$		
			+4x+2) = x3 + 3x2 +		
			12x + 6. The second		
			example is the reason		
			that students should		
			use grids to multiply		
			rather than arcs to		
			show the products		
			when expanding		
			brackets. Once		
			students have		
			automaticity with		
			expansions and have		
			gracpod that they find		
			grasped that they find		
			the product of all		
			possible pairs of		
			terms and sum them,		
			tnen the use of grids		
			can be stopped.		
			Students who use a		
			method of tracking		
			their products		
			through the use of		
			arcs often miss one or		
			more products,		
			particularly when		
			there are more than		
			two terms in one of		
			the brackets, as in the		
			example above Many		
			students narticularly		
			weaker candidator		
			continuo to uso thi-		
			continue to use this		
			inethod for the		
			duration of the A		
			level course.		