Half Ter	Unit Title	$\underset{\substack{\text { Key } \\ \text { Knowledge/Content }}}{ }$ to learn and retain	Essential Skills to acquire (subject \& generic)	Link to intent and ethos	Anticipated misconceptions	Links to previous ks	Link to future KS	$\begin{gathered} \text { Opportunity for } \\ \text { stretch and high prior } \\ \text { attainers } \end{gathered}$	SMSC \& British Values	Cultural Capital	Career Lin
AUT 1	Developing Geometry	IArea of Trapezia Three - dimensional shapes	Calculate the area of a trapezium Calculate the perimeter and area of compound shapes Surface area of cubes and cuboids Surface area of cubes and cuboids Volume of cubes and cuboids Volume of other 3-D Shapes	Ordering the right quantity of turf for a sports field, preparing detailed floor plans, and working out how much fertiliser is needed to treat a field crop all require knowledge and calculations of area Freight costs are dependent upon the volume of material being transported. calculated using the container volume measured against the length of the container. The longer the container the higher the freight cosy	Students do not state the units when finding the length of an unknown. Students don't use the perpendicula height when calculating the area of a triangle or parallelogram; they use the length given for the sloped side. Students don't recognise rightangled trapezia as a thinking that all trapezia have two sloping sides confusing the units for area and volume when calculating surface area For triangular prisms some students will still not use the perpendicular height of the face triangle to calculate the area of (when given the slant height).	The sum of the Units of measurement Perimeter of shapes Substitution	Intergrations Intergration Volume of revolution Differentiation	The formulae learned and used can be used to find the area of surfaces of a 3D shape You can use surface area and volume of solids to form a background for questions on ration and similarity		Things to Make and Do in the Fourth Dimension by Matt Parker	Farm manager Farmers and farm managers grow crops and raise farm production production. Retail buyer Wholesale buyer food buyer, buyer for retail
Aut 2	Reasoning with Algebra and the coordinate grid	Straight line graph	Lines parallel to the axes, $y=x$ and $y=-x$ Using tables of values Compare gradients Compare intercepts Understand and use $y=m x _c$ Write an equation in the form $y=m x+c$ Find the equation of a line from a graph Interpret gradient and intercepts of real-life graphs	The curse and lines of buildings are designed using complex equations and their graphs. one of many progression in which people plot and use graphs in their work	Students sometimes think the constant $(+c)$ tells them the step increase (gradient) when plotting coordinates Students occasionally think the ' +c ' tells them the starting point on the x-axis, rather than the y-axis When plotting lines, students often do not look at the big picture: if they have made a mistake in calculations, the line is no longer straight, but they will nonetheless plot their points regardless.	How to generate terms in a sequence from a given rule. How to identify coordinates of a given point. How to manipulate and solve equations. How to change the subject of a formula	Linear programming Equations and tangents Tangents to circles Vectors	You can extend the work on straight-line graphs, considering exponential and trigonometric graphs Problems involving direct proportion can be represented or solved using straight line graphs			Architect Alternative titles for this job include Architects design new buuidings and the spaces around them, and work on the restoration and conservation of existing buildings.

		Percentage \& Interest Multiplicative reasoning	Solve speed distance time problems with a calculator Use distance-time graphs Solve problems with density mass and volume Solve Flow problems and their graphs Rates of change and their units Calculate simple and compound interest Repeated percentage change Find the original value after a percentage change Solve problems involving growth and decay Understand direct proportion Calculate with pressure and density Understand inverse portion	and work with measurements is important when you make or alter clothes, work out what materials you need to build things and weight ingredients to make a recipe Many real-life situations involve growth increase or decay as time passes. Population numbers, growth of bacteria, disease infection rates, word temperature patters and value of money or possession might all increase or decrease over time Proportional reasoning is very common in daily life, you use proportional reasoning when you mix ingredients for a recipe, convert between units of measurement or work out costs per unit. It is an area of maths where you can use many different methods to solve problems	rest of the metric system and hence write 3.5 hours $=3$ hours 50 mins or similarly 3 hours 30 mins as 3.3 hours. Some students find it hard to remember what these two types of interest are Confusion between the words ratio and proportion Rounding too early when using the unitary method	How to find the volume of a cuboid How to measure accurately using a ruler and protractor How to convert percentages to decimals. How to find a percentage of a quantity using multiplication. How to increase or decrease a quantity by a given percentage by multiplying by a suitable decimal. How to work with numbers including extensive fractions work. How to write ratios and interpret them. How many minutes there are in fractions of an hour.	Rate of change is the motivation behind differentiation and is used extensively at A level. In addition to this, exponential growth is studied in more detail and leads to the exponential function (based on Euler's number e). Students who go on to A level mathematics will encounter proportionality in the description of rates of change and thus in differential equations	direct and inverse proportion interpreting graphs		produce maps, charts and plans. Investment analyst Investment analysts help stock market traders, stockbrokers and fund managers make decisions about investments Chef Chefs prepare, cook and present food in hotels, bars and restaurants.
Summer		Three Dimensional shapes	Know names of 2-d and 3-D shapes Recognise prisms including language of edge/vertices Plans and elevations Scale Drawings	Many people use geometry in their jobs and daily lives. Artists, crafts peole builders, designers, architects and engineers use shape and space in their jobs, but almost every uses lines, angles pattern and shapes in different ways everyday	Students sometimes muddle the meanings of face, edge and vertex. Ensure the correct definitions are given at the start of the topic, and reinforced whenever talking about 3D objects. The difference between a prism and a pyramid can be difficult to grasp. To tackle this, ask students to think what would happen if you cut slices of the shape? Would they all be identical (like a	How to identify common 3D objects. Basic properties of polygons and common 3D objects. How to accurately construct lines and angles using ruler and compasses	The volumes of solids of revolution are considered at A2. These are solids formed by rotating a curve around some straight line, for example the sorts of objects that might be produced on a lathe. Working with the three dimensional solid called a parallelepiped is a common source of problems when using vector Methods.	Students will need to use their skills in visualising in three dimensions to tackle problems that use Pythagoras' theorem in solids Considering the net of a solid is a key part of the process of calculating the surface area of a solid in	The Math Book by Clifford A Pickover	

